1) (5 points) Suppose that $F : \mathbb{R}^n \rightarrow \mathbb{R}$ is continuously differentiable, and that \mathbf{p} is a point in \mathbb{R}^n. What is the relationship between the level set where $F = F(\mathbf{p})$ and the gradient vector $\nabla F(\mathbf{p})$?

(Yes - you must write a sentence or two. Sentences start with capital letters, and end with some form of punctuation, typically a period.)

2) Let $F(x, y, z) = 2x^2 + 3y^3 - z$.

a) (4 points) The point $(1, 1, 2)$ lies on the level surface where $F = c$, if c has what value?

b) (7 points) What is $\nabla F(1, 1, 2)$?

c) (7 points) Give an equation for the tangent plane to the level surface where $F = c$ (c from part (a)) at the point $(1, 1, 2)$.
3) Let \(\mathbf{r}(u, v) = (e^u \cos v, e^u \sin v, u) \).

a) (6 points) What are the values of \(\mathbf{r} \), \(\mathbf{r}_u \), and \(\mathbf{r}_v \) at the point \((0, \pi/2)\)?

b) (6 points) What is \(\mathbf{r}_u \times \mathbf{r}_v \) at the point \((0, \pi/2)\)?

c) (4 points) Is the parameterization \(\mathbf{r} \) regular at \((0, \pi/2)\)? How does your answer to (b) tell you this?

d) (4 points) Give a parameterization for the tangent plane of \(\mathbf{r} \) at \((0, \pi/2)\).

e) (4 points) Give an equation for the tangent plane of \(\mathbf{r} \) at \((0, \pi/2)\), which describes the tangent plane as a level set.
4) (15 points) Let \(f(x, y) = x^3 + 3xy - y^3 + 2 \). Verify that the critical points of \(f \) are non-degenerate, and classify each one as a point where \(f \) has a local maximum value, a local minimum value, or a saddle point.

5) (6 points) Suppose that \(g(x, y) \) has a non-degenerate critical point at \((1, 2)\), and attains a local minimum value at \((1, 2)\). Sketch what four level curves of \(g \) might look like near \((1, 2)\) and sketch in three possible gradient vectors of \(g \) on each level curve.
6) (16 points) Suppose that x and y are measured in meters. Let E be the (compact) region in the xy-plane that is bounded between the graphs of $y = x^2$ and $y = 4$, including the top line-segment and the bottom parabolic edge. A heated metal plate occupies the region E. The temperature, in $^\circ$C, at a point (x, y) on the plate is given by $T(x, y) = x(y - 1)$. Find the maximum and minimum temperatures on the plate.
7) (16 points) Use Lagrange multipliers to find all of the critical points of \(f(x, y) = x - y^2 \), subject to the constraint \(x^2 + y^2 = 1 \).
EXTRA CREDIT:

Recall that, in problem (3), we looked at the parameterization \(\mathbf{r}(u, v) = (e^u \cos v, e^u \sin v, u) \).

a) (3 points) Show that \(\mathbf{r} \) parameterizes (part of, or all of) the surface where \(x^2 + y^2 = e^{2z} \).

b) (2 points) Think about the \(z \)-cross sections of the surface where \(x^2 + y^2 = e^{2z} \), and how they change as \(z \) goes from \(-\infty\) to \(\infty \). Now sketch the surface where \(x^2 + y^2 = e^{2z} \), i.e., sketch the surface parameterized by \(\mathbf{r} \).